

Semantic Selection for Model Composition using SAMSaaS

Sixuan Wang Gabriel Wainer
Dept. of Systems and Computer Engineering

Carleton University
1125 Colonel By Dr. Ottawa, ON K1S5B6, CANADA

{swang, gwainer}@sce.carleton.ca

ABSTRACT
The reuse of existing models in modeling and simulation
software is becoming increasingly important. One way to
improve model reuse is through composition. Even though
much work has been done for model composition at the
syntactic level, research at the semantic level is still under
development. In particular, selection for model composi-
tion based on semantics is complex, because it is hard for
casual users to understand the formal definition of models.
Likewise, there are no automated mechanisms to build do-
main-specific ontologies based on the models. In order to
deal with the above issues, we introduced SAMSaaS (Se-
mantic Architecture for Modeling and Simulation as a Ser-
vice), a layered architecture to deploy and compose M&S
resources as services. Here, we focus on the upper layers of
the architecture, and present a tag mining method and a
tag-tree ontology learning approach to learn domain specif-
ic ontology for the models. We show an application to
DEVS examples to show its success and possible applica-
tions.

KEYWORDS model composition, semantic composition,
model selection, tag mining, ontology learning.

1. INTRODUCTION
In recent years, the modeling and simulation (M&S) com-
munity has investigated new methods to reuse models in
order to save time and reduce costs. One way to increase
such reuse is through model composition, defined as the
process of selecting and assembling models in various
combinations to meet user requirements [1].

Figure 1. Model composition, repository and simulation

Figure 1 shows the idea of model composition and its rela-
tions with repositories and simulation. Using model com-
position, we can select and assemble models from a reposi-
tory and simulate the assembled model. Model composition
is more than just putting models together: it is to recombine

components for different requirements [2]. Model composi-
tion can be addressed at the syntactic and semantic levels.
Syntactic composition focuses on the actual implementa-
tion of composition; while semantic composition focuses
on the underlying abstraction and meaning of the models
[3]. Even though much work has been done in syntactic
composition, semantic composition research is still in early
stages. In particular, little research has been done in seman-
tic selection for model composition, which requires the us-
ers to understand the meaning of models at the semantic
level. The major issues are as follows: 1) users cannot fully
understand the formal definitions of models [4]. 2) It is
hard to get the “meaning” of the models [5]. 3) There is no
way to build domain specific ontologies just based on the
models [6].

We want to improve the selection for model composition
based on semantics. In order to describe the model better,
we propose using a model description in XML with mea-
ningful information. In order to get the meaning of the
models, we propose a tag mining method to get the seman-
tics of models by tags. In order to get the domain specific
ontologies, we propose an ontology-learning technique to
construct a tag tree based on the XML Model Descriptions.
We introduced a novel architecture, named Semantic Ar-
chitecture for Modeling and Simulation as a Service
(SAMSaaS), a layered architecture to deploy, identify, dis-
cover, compose, and invoke varied M&S resources as ser-
vices in the Cloud. In this paper, we will discuss the Se-
mantic Selection for Model Composition in the upper lay-
ers of SAMSaaS.

Model composition focuses on selection and assembling
models. In particular, we focus on the semantic selection
for model composition. We will not focus on assembling
heterogeneous models, but rather on selection of individual
models for composition based on semantics driven tech-
niques. We are particularly interested on the semantic se-
lection of DEVS models [7] and to provide users with
meaningful suggestions for composition.

2. BACKGROUND
To compose models we need to select and assemble those
that meet user requirements. A model can be defined using
different modeling techniques, like Modelica [8] or DEVS
[7]. These models can be hard to understand for casual us-
ers who are not familiar with the modeling method [4], es-

pecially when they are not M&S experts. In addition, each
method defines models based on different abstractions,
which may cause misunderstandings [9].

In order to deal with these issues and help users understand
the models, new technologies, like XML, have been widely
used. XML is used because it provides platform indepen-
dent model descriptions that are robust and extensible [10].
In [5], the authors presented an M&S-based data engineer-
ing approach that allows a uniform way of describing dis-
tributed resources in XML. Many DEVS tools use XML to
describe the models to increase model reusability in differ-
ent languages and platforms. For instance, DEVSML [11],
DML [12] and RISE [13] provide mechanisms using XML
to combine different models. CoSMoS [14] supports com-
ponent-based modeling for DEVS and XML Schema. Si-
MA [15] provides a similar system using XML for compo-
sition. In [4], the authors defined interface descriptions in
XML as separate units of model definitions for discrete
event models. All these approaches focus on describing
platform-independent models in XML, but they do not an-
swer how to compose existing models. Using XML alone is
insufficient to deal with the meaning of the models.

Web-based Simulation (WBS) has also helped with model
composition (in a simulation interoperability context) by
providing different Web Services (WS) for sharing, com-
posing and executing simulation models online. The variety
of WS used can be categorized into two main classes:
SOAP-based and RESTful. For example, in [17], the au-
thors implements DEVS over an SOA framework. Instead,
the RESTful Interoperability Simulation Environment
(RISE) [13] introduced RESTful distributed simulation.
Cloud computing is also popular for building simulation
environments [18]. Most existing WBS efforts focus on
simulation interoperability; they cannot provide meaningful
model descriptions to help users composing models.

Semantic composition tries to use the meaning of the mod-
els and focuses on understanding this meaning. In [19], the
authors introduced the Levels of Conceptual Interoperabili-
ty Model (LCIM), which identifies seven levels of intero-
perability. In LCIM, the semantic level was defined as the
meaning of models, requiring a reference model for com-
mon information exchange. In [20], the authors use prag-
matics (data use in relation to data structure), semantics
(meaning of terms) and syntax (data structure and rules). In
[17], the authors proposed a layered M&S architecture. A
modeling layer is related to semantic composition (focusing
on independent model representation) and a collaboration
layer focuses on common understanding. These M&S
frameworks focus on the system architecture and they do
not address how to get the semantics for these models or
how to select the models.

There are many efforts focusing on ontologies for semantic
composition. Ontologies can help getting the meaning of

the models. The idea is to add a semantic layer to the mod-
els and to associate them to an external ontology (which
consists of shared terms or vocabularies that are commonly
understood, without ambiguity or misunderstanding). In
[21], the author presented an ontological representation of
the concepts and contexts under DEVS framework. In [22],
the author discussed the role of ontologies as a strategy to
improve composability. In [5], the authors used a Common
Reference Model (CRM) as an ontology for model compo-
sition. DeMO [23] is a discrete-event modeling ontology
that provides a precise description of simulation models
with hard semantics. In [24] the authors presented a method
for using the knowledge encoded in ontologies to facilitate
the development of simulation models. In addition, some
authors use ontologies in the semantic web to discover and
match service components. In [25], the authors proposed to
use an existing Semantic Web Platform to support their si-
mulation projects. In [26], the authors used OWL-S to de-
fine a layered ontology (resource, function, simulation) for
composing simulation services. In [4], the authors used the
XML Schema Definition (XSD) to check the compatibility
of models by applying semantic annotations. Most of these
approaches depend on pre-defined ontologies, and defining
a single conceptual model to represent all the simulation
models is not practical [15]. Most ontologies are developed
manually by skilled ontology experts, and ontology build-
ing is complex and time consuming. Also, pre-defined on-
tologies are hard to understand and learn and they may not
cover all concepts for the user.

Another way to get the semantics from the models is by us-
ing tagging systems. In Web 2.0, tagging systems (also
termed as Folksonomies) can be seen as large collections of
informal semantics [27] in which many users cooperate to
annotate objects with free-form tags of their choice. The
more times a tag is used, the more accurate will be to
represent the resource semantics; thus, tags will ultimately
cover domain concepts [28]. A major problem of tradition-
al tagging systems is their lack of structure/hierarchy.
Loosely related tags make it difficult finding and selecting
the related resources.

In brief, although semantics and ontologies are being used
in M&S, it is still hard to get the meaning of the models for
semantic composition. Little has been done about automat-
ic learning domain-specific ontologies for the models. Tag-
ging systems can help getting the model semantics, but
there is no method on the use of tagging system and trying
to learn tag hierarchy as ontologies in M&S.

Based on these ideas, we propose a novel architecture,
named Semantic Architecture for Modeling and Simulation
as a Service (SAMSaaS) to manage and compose models
based on tag-based ontologies learning. Note that besides
these objectives, SAMSaaS intends to improve the reuse of
M&S resources (which is out of scope of this paper).

3. SAMSAAS ARCHITECTURE
Figure 2 shows the layered architecture of SAMSaaS. In
general, SAMSaaS can deploy, identify, discover, com-
pose, and invoke varied M&S resources as MSaaS. This
architecture has the following five layers.

1) Cloud Layer: it is responsible for providing Cloud in-
frastructure support, like Cloud compute units and Cloud
storage units. All resources (including models) are stored
and all experiments are executed in this layer.

2) Component Layer: it is responsible for deploying user-
provided M&S resources as MSaaS by using the MSaaS
middleware (implemented by CloudRISE) on-demand. In
addition, this layer can identify and register all the services.

3) Tag Ontology Layer: it is responsible for mining the
semantics (by using Tag Mining functions) and learning the
tag tree ontology (by using a Tag Tree Learning algorithm)
according to registered model and other services.

4) Composition Layer: it is responsible for semantic com-
position. It can select from existing models and other ser-
vices based on their tag semantics (using Semantic Selec-
tion) and assemble them (using Semantic Assembling).

5) Application Layer: it is responsible for developing new
applications according to user requirements. This layer can
discover and recommend meaningful models and other ser-
vices for users. It also automates M&S workflows.

The semantic selection for model composition mainly in-
volves the upper layers of SAMSaaS, which are Ontology
Layer, Composition Layer, and Application Layer. SAM-
SaaS allows the users to deploy any user-provided model
and related files in the Cloud. SAMSaaS can manage mod-
el descriptions by tags, get their semantics by tag mining,
and learn domain specific ontologies, after which, we can
select models according to the user requirements. In the
following sections, we focus on the basic ideas, design and
implementation of the upper layers of SAMSaaS in terms
of semantic composition of model selection.

Figure 2. SAMSaaS Architecture

4. SEMANTIC SELECTION FOR COMPOSITION
4.1. Meaningful Description
As discussed above, in order to understand existing models
better, we need a meaningful model description containing
all necessary information about the model. As an example,
we propose an XML Model Description for DEVS mod-
els, shown in Figure 3. As seen in Figure 3, a DEVS model
(<Models>) may have different submodels (<Model>):

atomic (defining behavior) or coupled (defining structure).
The basic information includes the model name, type (e.g.
atomic or coupled), and a description. If the model contains
input/output ports, it also keeps them in <Ports>, including
their name, type, and a description. The type is the message
type accepted in that port. In addition, it can store the files
used for this model in <Files>, including file name, type
and location. A model can have multiple files; for instance,

a DEVS model can have CPP classes, headers, and model
configuration files. The type is the extension of a file. For
example, EV means this file is an external events file. The
XML Model Description keeps general information, which
can be customized.

We can get this XML description file in different ways: 1)
the modeler can provide it; and 2) it can be constructed
from a well-defined modeling language automatically. For
example, CD++ [29] is a simulation environment to ex-
ecute DEVS models. We can extract most parts of this file
from the CD++ model definition file. This kind of descrip-
tion should be separated from its definition and stored in-
dependently in order to not to affect the model definition.

<?xml version="1.0" encoding="UTF-8"?>
<Models>
 <Model name="" type="" description="">
 <Inputs> <Port name="" type="" descrip-
tion=""/> ...
 </Inputs>
 <Outputs> <Port name="" type="" descrip-
tion=""/> ...

</Outputs>
<Files> <File name="" type="" loca-

tion=""/> ... </Files>
 </Model> ...
</Models>

Figure 3. XML Model Description template

4.2. Obtaining the “Meaning” of the Models
As mentioned before, a second issue with semantic compo-
sition is how to get the meaning from the models. In our
case, we use a tagging system and mining techniques to get
tags from the XML Model Descriptions automatically.

We define the Model Tag Signature in Definition 1. Each
Model Description corresponds to a Model Tag Signature,
and each element in the Model Description corresponds to
a set of tags in the Model Tag Signature.

 Model Tag Signature= < TN, TI, TO > (Definition 1)
- TN = <tmodel> is a set of tags with general information
of the model, including its name, type and description.
- TI = {<tport>}, is a set of tags for input ports, including
port name, type and description for each port.
- TO = {<tport>}, is a set of tags for output ports, includ-
ing port name, type and description for each port.

We use Tag Mining Functions to mine tags from the
Model Description and build the Model Tag Signature. In
general, a tag mining function converts each part of the
XML Model Description into a set of corresponding tags,
reducing the terms in the description and generating tags
that can represent the model better. The Signature is saved
in XML and stored together with its XML Model Descrip-
tion. The Tag Mining Function has two steps:

1) Syntactic pre-processing
- Tokenization: the element in the XML Model Description
can contain multiple terms consisting of text and delimiters

used to separate each term. For example, the new_customer
will be tokenized into {new, customer}.
- CamelCase: they are compounded words that are perso-
nalized by users, (e.g. BarberShop), we separate them into
different terms (e.g. {Barber, Shop}).
- StopWordFilter: some words are not needed for semantic
composition, like “the”, “a”, “and”, “it”, “its”. We in-
clude them in a filter list.

2) Semantic pre-processing
- POS (Part of Speech): we consider that meaningful tags
should be nouns or verbs. We use the POS concept of Nat-
ural Language Processing and an online API (e.g.
http://www.merriam-webster.com/dictionary/) to automati-
cally get the POS of each term and keep noun/verb terms.
- Abbreviations: we use an online API (like http://www.
abbreviations.com/) to replace the abbreviation term with
its full version automatically.
- Plural nouns and verb conjugation: after knowing the
term’s POS, we keep only the single form of the noun and
the infinitive form of the verb (e.g. customers is replaced
by customer, and finishes by finish).

4.3. Learning Domain Specific Ontology
After we have all the Model Tag Signatures, we define the
tag tree ontology for the tags in these tag signatures. We
first define the Tag Tree Ontology as follows:

Tag Tree Ontology TR = (T, E) (Definition 2)
TR is a Directed Acyclic Graph. T is a set of vertex
represent tags {t1,t2,...,tn}, and E is the set of edges
represented “subTag” relationship between two tags (for-
mally t1 ≺ t2).

Currently, the only relationship we considered is subTag,
which is learned from the tag co-occurrence graph of the
Model Tag Signatures. The subTag relationship shows the
semantically equivalence of tags. It implies that if a model
can be described by a child tag, it will also be correct if de-
scribed by its parent tag. The tree positions of the tags re-
flect the semantics of the model. Therefore, this kind of tag
tree serves as an ontology for the given models.

The tag-tree ontology acts as a simplified domain-specific
semantics, representing knowledge using tags agreed by
users. Unlike the complex structures and relationships in
normal ontologies, a tag-tree ontology only includes tags
and their hierarchy, which makes it easy to understand and
modify. The tags in higher levels are more general and ab-
stract, while the tags in lower levels are more detailed and
concrete. A tag tree can be a subset of an ontolo-
gy/terminology for a domain that is defined by semantic
experts. Users are also free to define their own tag trees.

Now, let us see how to learn the tag-tree ontology based on
the models with mined tags. We defined a Tag Tree
Learning Algorithm based on [28], whose idea is that tags
tend to express the same concepts if they occur together

frequently. Heymann’s algorithm cannot be directly used
for the model composition because it only works for con-
nected tag graphs. Heymann’s algorithm assumes that there
should always be a path between two tags in the graph, and
that the weight of two connected tags should always be 1.
Therefore, we cannot use it (i.e. because the tags mined
from models can be anything; the tag graph could be
weighted and unconnected). Heymann’s algorithm uses the
cosine similarity, and it does not consider all kinds of rela-
tionships between tags, including frequency, syntactic or
semantic similarities. Instead, our algorithm deals with
these issues. The process is iterative. On each iteration, it
does followings: 1) select a right tag to be added into the
tree; and 2) find the tag’s position in the tree.

The algorithm initials the tree TR with a root node. Then, it
calls the Centrality Function to get the closeness centrality
list of given tags in descending order. This centrality list
indicates how central the tag is in the Co-occurrence Graph.
Next, it selects each tag in the closeness centrality set. The
Similarity Function tells where we should place the tag, it
checks the tag with each tag in the tree, and it finds a tag to
be attached with highest similarity. If the highest similarity
is greater than the predefined threshold, it adds the tag as a
child; otherwise, it adds the tag as a child of the root node.

 (Definition 3)

For selecting the right tag, we modified the closeness cen-
trality function (the inverse value of the sum of the dis-
tances to all other nodes) [28]. We calculate the closeness
as the sum of the inverse distances to all other nodes (Defi-
nition 3). The edge of the tag graph is now weighted by the
distance of tags (not always 1). This also handles cases
with unconnected graphs. For instance, if two tags (e.g. a
and b) are not connected, their distance will be infinite (e.g.
Fab= 0, so Dab→∞), these two tags will be calculated as 0
(e.g. 1/Dab=1/∞→0). Therefore, the unconnected tags will
contribute nothing to the closeness of each tag, which
makes the centrality more accurate.

For placing the tag in the right position into the tree, we use
a similarity function to check each tag in the existing tree
and to find the tag with highest similarity. The similarity
function considers the distance of the two tags in the co-
occurrence graph; the syntactic similarity of the two tags is
based on the editing distance; and the semantic similarity of
the two tags is based on the Levenshtein edit distance, and
if the two tags are synonyms. We use WordNet [30] as a
linguistic database for finding synonyms.

4.4. Semantic Model Selection
Our tag-based semantic composition can provide Compos-
able Models that can be linked (Definition 4). Let us as-

sume there are two Model Tag Signatures M1 and M2. If
for any tag t2 in the tag set Ti of a M2’s input port there is a
tag t1 in the tag set To of an output port of M1, and t1 is
equivalent to or a “subTag” of t2 (formally t1 ≺ t2), then
M1 can be composed with M2 (formally M1→M2). We
view the tags as semantically equivalent if they have a rela-
tion in the tag tree. If the tags produced by a model are se-
mantically equivalent to the tags accepted by another mod-
el, these two models could be composed.

M1 -> M2 Composable Models (Definition 4)
M1=<Tm1,{Ti1},{To1},> and M2=<Tm2,{Ti2},{To2}> are
two Model Tag Signatures for a given a tag tree ontology
TR = (T, E). M1 -> M2 are said composable if they satis-
fy that ∀ t2 ∈ Ti2; ∃ t1∈ To1; ∃ t1 = t2 or t1≺ t2 in T.

Based on the composable models, we can recommend the
users the models that they may be interested in, suggesting
semantically equivalent models (i.e. tags are identical or
have a subTag relation). For DEVS models, the composa-
ble models suggest potential coupling linkings of the mod-
els (i.e. linking input and output ports of two models).

Besides the model recommendation for a given model, our
approach could also help users discover other models. They
can query models by tags of their name/inputs/out-puts,
and we return models that meet their query semantically.
For example, if a user wants to find a model with an output
with the tag password, and no model has that output, but
there is one with output pin, and the tree includes a relation
pin≺password, we will suggest that model.

5. IMPLEMENTATION
We developed CloudRISE, a middleware to manage all
the resources related to SAMSaaS in the Cloud, and a Py-
thon project PyCom that implements the tag-based model
composition logic. CloudRISE implements the concept of
MSaaS (exposing all kinds of M&S resources as services).
CloudRISE is an extended version of RISE [13] for repro-
ducing experiments for either the simulations or supported
functions. CloudRISE uses a resource-oriented design via
RESTful WS in which M&S resources are identified
through URIs in the Cloud.

CloudRISE works as a repository interface for users to
share and manage the M&S resources. There are six main
branches: models, data, semantics, instances, simulations,
and functions. The ones related to the tag-based model
composition are models (i.e. model files, Model Descrip-
tions and Model Tag Signatures), and semantics (i.e. tag-
tree ontology). Users can upload and modify these files by
using the HTTP methods GET/PUT/POST/DELETE to the
corresponding URIs. For instance, we use PUT to
.../models /{approach}/{model} to give an XML Model De-
scription for the model; POST to
.../models/{approach}/{model}/files to append its Model
Tag Signature; DELETE to .../models/ {approach}/{model}

to remove a model, or GET .../models/ {approach}/{model}
to retrieve the files related to a model.

Figure 4. PyCom Class Diagram for semantic composition.

The tag-based model composition is implemented in a tool
called PyCom, described partially in Figure 4. PyCom uses
two kinds of classes: data type and logic. The data type
classes include ModelDescription, ModelDescriptionHan-
dler, TagSignatureList, TagSignatureHandler, TreeList,
and TreeHandler. Since our XML files are stored in the
Cloud (through CloudRISE), all data type classes in Py-
Com are for storing data in corresponding XML files. The
handler classes load and save these XML files into a list.
The logic classes include TagMining, Tag TreeLeaning,
Model Composition, Discovery, Recommendation, and
Main-Application. TagMining implements the functions
discussed in Section 4.2 to mine tags for the models. TagT-
ree-Learning has functions to learn a tag tree ontology
based on the algorithm of Section 4.3. The Model composi-
tion can check the relations of two tags (whether they has
subTag relations in a given ontology tree), and check
whether two models are composible. The Discovery can
find models that have semantically equivalent tags in their
inputs and outputs. The Recommendation can suggest users
with models that they may be interested in. Note that Py-
Com can be extended for specific functions or other model-
ing formalisms.

6. TEST AND CASE STUDY
In this section, we test the success of the proposed tag-
based semantic model composition, and then we show a
case study to select models for user requirements.
6.1. Success Rate Testing
We tested our approach using an existing repository of
CD++ models. We chose 16 model samples at random
(with a total of 103 sub-models). These are DEVS models
and cover a wide range of domains, such as network proto-
cols, mobile phones, alarm systems, secure area access,
computer networks, and transportation. Each model has
different submodels that could be reused for new purposes.

In order to test the effect of the Model Description for
model composition, we used two different Model Descrip-
tions. In the first version, we obtained the model names and

port names from its model definition file, and built the De-
scription automatically. Note that in this version the ports
only have name but no description. For the second version,
we improved these with meaningful text, studying each
model carefully and writing detailed descriptions.

Then, we used the tag mining functions to get tags for these
models and built a tag tree from these tags following our
tag-tree learning algorithm. The tag hierarchies of the two
trees obtained were reasonable. Most subTag relations
were correct. For example, feedback ≺ notify ≺ model;
wireless ≺ network ≺ data ≺ system ≺ model ≺ treeRoot.
Note that the trees are domain-specific and can be modified
by the users. We customized the second tree (e.g. removing
a few tags that were made nonsense, like access ≺ area).

The tests were based on the idea that for the existing DEVS
models, we know how the models can be composed, and
we use these as the expected set. Using our approach, we
get a learnt set that suggests models. The idea of this test
is to compare how similar these two sets are. We measured
the overall success of the two sets using popular metrics in
graph similarity analysis: sensitivity (S), precision (P), and
F-measure (F), which are defined in Definition 5.

 Composition Metrics: (Definition 5)
 S=C/(C+M); P=C/(C+E); F=2/(1/S + 1/P)
Where, C (Common) is the common number of couplings
in both sets, E (Extra) is the number of couplings that on-
ly exists in the learnt set; and M (missing) is the number
of couplings that only in the expected set.

In particular, expected set is the sum of common models (C)
and missing models (M); while learnt set is the sum of
command models (C) and extra models (E). Sensitivity (S)
represents the ratio of common models in expected set, i.e.
S=C/(C+M); while Precision (P) represents the ratio of
common models in learnt set, i.e. P=C(C+E). Usually, sen-
sitivity and precision are combined into F-measure (F),
which is defined as their harmonic mean F=2/(1/S +1/P)).

Figure 5. Model composition success rates.

Figure 5 shows the test results. We show the results of
three different tests. The first one used an empty tree (i.e.,
if two models can link, they must have the same tag). The
other two tests used the two trees discussed above. As we

can see, using tag-trees has a higher success rate. Tree 1 is
the one learnt from the port names, and Tree 2 is custo-
mized with more descriptions. Tree 2 has a better success
with an average of 75% for each criterion, which shows
how the description improves semantic selection. The emp-
ty tree is always worse: it can only find around 40% of all
the three metrics. A possible reason for this is that this tree
is only based on a keyword search, in which two models
that can be linked must have the same tag, without any se-
mantic considerations. In our tag tree approach, more se-
mantic factors are considered, and we can find more coupl-
ings matching the best case (i.e., our approach will use tags
that are not exactly the same but semantically equivalent).

6.2. Case Study
Let us assume that we want to build an occupancy model
for a public service office. During the day, people come in-
to the office at random, and there are different officers
serving them throughout the day. We want to evaluate the
work efficiency of officers and to improve their service. To
do that, we want to know: 1) the time of the day, and 2) the
total number of clients who have been served. If we search
existing models looking for the keywords time and number,
we obtain an empty result. Instead, using PyCom with se-
mantic model selection, we obtain results based on Figure 6,
which shows parts of Tree 2. In this tree, we can see that
there are several subTag relations, such as count ≺ number,
clock ≺ time, and passenger≺ customer≺ user.

Figure 6. A part of the learnt tag tree ontology.

Initially, we know that the occupancy model should have
two output ports: one with tag number (number of clients
who have been served) and one with tag time (the time of
the day). By searching time as an output tag, PyCom sug-
gests models with those ports, and we can choose the one
that meets our demands best. For instance, it can suggest
model Clock since in the tag tree there is clock ≺ time,
which means that the output clock generated from the
Clock model can also be the output time for the target mod-
el (see Figure 7). Clock is an atomic model included in the
Alarm model sample. Clock can take inputs of hour and
minutes, set the current time and keep updating the time as
a wall clock in the output clock port.

Similarly, when searching number as an output tag, since in
the count≺ number, PyCom will suggest model Counter,
which is included in the Garage Door model sample. The
model takes an input in done, and it counts how many in-

puts were received. PyCom can be used to suggest models
that can link to Counter as inputs. Since we have finish≺
done, which means that the input done of the Counter
model can be linked with the output finish of the
Processing model. The Processing model is from the Air-
port Boarding model and it can process an input user, and
after serving the user, it will generate an output finish. Si-
milarly, since customer≺ user, PyCom can suggest Queue
from the Panama Canal model as a sample for Processing,
which takes a customer in a buffer. Then PyCom can sug-
gest Generator from the Train model sample since there is
passenger≺ customer, which can generate new passengers
to be served.

Figure 7. Semantic model composition for an Occupancy
case using the tag-based composition approach.

Now, the model selection is done, we can link them as a
new coupled model. This model will take the input of hour
and minute, and generate the output of time and the number
of users that have been served. Inside this model, it will
generate clients, queue them in the reception, serve them
and count the number that have been served. As we can
see, we have reused models from 5 different samples, and
saved development time by selecting and reusing existing
models. Please note that these suggested models can be
reused fully or partially. This depends on the users’ respon-
sibility to customize these models. In fact, they can do
whatever they want to improve the logic inside each reused
model. For example, the queuing logic in Queue may be
FIFO; but in this case, we need a priority-based order. If
so, we can change it accordingly. In addition, the serving
time in the processing model maybe dependent on the time
of day, so we can add a new port time in the processing
model and link it as an output with the clock in the Clock
model (the dashed line added in Figure 7). So far, the mod-
el is complete and we can assemble the found models to-
gether in model definition file and execute it in either stan-
dalone simulator (i.e. CD++) or on our web-based simula-
tion middleware (i.e. CloudRISE).

This example shows the effectiveness of our approach for
selecting models using the semantic of the tags by the leant
tag-tree ontology, which can provide meaningful models to
meet our requirements. Please note that there are only
“subtree” relations between tags in current tag tree ontolo-
gy. However, the tag tree could be complicated with more
relations and constrains. For instance, the learning algo-
rithm can be improved by analyzing more semantic rela-
tions of tags, and ontology experts can improve the tag
trees with specific constrains. Furthermore, if the models

are very close, our approach may suggest users more mod-
els. In that case, users are responsible to decide which
models to use, since this paper focuses on recommending
models to users instead of making decision for the users.
This issue could be handled if users provide more accurate
model descriptions; so close models can have different tags
and could be suggested in different cases.

7. CONCLUSION
We presented a new architecture, called SAMSaaS, for se-
mantic selection for model composition. It uses a tag-based
approach to help users to select existing models in a seman-
tic way. In particular, we proposed a XML Model Descrip-
tion with meaningful information for models. We presented
a tag mining method to get their semantics as tags. We pro-
posed a tag-based ontology learning approach to learn do-
main specific tag-tree ontology for the models. In addition,
we implemented the CloudRISE middleware for model re-
pository and remote simulation execution. We also imple-
mented the PyCom tool for tag-based model composition.
We used different DEVS models as examples to test our
approach, showing a higher success when compared to the
traditional “keyword” selection.

The tests presented here are based on homogenous DEVS
models in CD++. In the near future, we will explore the
semantic assembling of heterogeneous models. Since the
models selected could be from different formalisms / im-
plementations, after selecting the models to be composed,
we might need data exchange or type transformation in or-
der to let the message transfer from one model to the other.

REFERENCES
1. Petty, M.D.; Weisel, E.W. 2003. A composability lexicon. In

2003 Spring Simulation Interoperability Workshop.
2. Petty, M.D.; Kim, J.; Barbosa, S.E.; Pyun, J. J. 2014. Soft-

ware Frameworks for Model Composition. Modelling and
Simulation in Engineering. 2014 (1), 1-18.

3. Davis, P. K.; Anderson, R. H. 2004. Improving the composa-
bility of DoD models and simulations. The Journal of De-
fense Modeling and Simulation: Applications, Methodology,
Technology. 1(1), 5-17.

4. Röhl, M.; Morgenstern, S. 2007. Composing simulation
models using interface definitions based on web service de-
scriptions. In the 39th conference on Winter simulation.

5. Tolk, A.; Diallo, S. Y. 2005. Model-based data engineering
for web services. Internet Computing, IEEE. 9(4), 65-70.

6. Wang, S.; Wainer, G. 2014. Semantic mashups for simulation
as a service with tag mining and ontology learning. In the
Symposium on Theory of Modeling & Simulation.

7. Zeigler, B. P.; Praehofer, H.; Kim, T. G. 2000. Theory of
modeling and simulation: integrating discrete event and con-
tinuous complex dynamic systems. Academic press.

8. Elmqvist, H.; Mattsson, S.E.; Otter, M. 2000. Object-oriented
and hybrid modeling in Modelica. In 4th International Confe-
rence on Automation of Mixed Processes.

9. Davis, P. K.; Tolk, A. 2007. Observations on new develop-
ments in composability and multi-resolution modeling.
In Proceedings of the 39th conference on Winter simulation.

10. Harold, E. R. 2002. Processing XML with Java. Addison-
Wesley Longman Publishing Co., Inc.

11. Mittal, S.; Risco-Martín, J. L.; Zeigler, B. P. 2007.
DEVSML: automating DEVS execution over SOA towards
transparent simulators. In Spring Simulation Multiconference

12. Touraille, L.; Traoré, M.K.; Hill, D.R. 2009. A mark-up lan-
guage for the storage, retrieval, sharing and interoperability
of DEVS models. In Spring Simulation Multiconference.

13. Al-Zoubi, K.; Wainer, G. 2013. RISE: A General Simulation
Interoperability Middleware Container Journal of Parallel
and Distributed Computing. 73(5), 580–594.

14. Sarjoughian, H.S.; Elamvazhuthi, V. 2009. CoSMoS: a visual
environment for component-based modeling, experimental
design, and simulation. In Proceedings of the 2nd interna-
tional conference on simulation tools and techniques.

15. Alpdemir, M. N. 2012. SiMA: a discrete event system speci-
fication-based modelling and simulation framework to sup-
port model composability. JDMS, 9(2), 147-160.

16. Röhl, M.; Uhrmacher, A.M. 2008. Definition and analysis of
composition structures for discrete-event models. In Proceed-
ings of the 2008 Winter Simulation Conference.

17. Mittal, S.; Zeigler, B. P.; Martin, J. L. R. 2009. Implementa-
tion of formal standard for interoperability in M&S/systems
of systems integration with DEVS/SOA. International Com-
mand and Control C2 Journal, Special Issue: M&S in Sup-
port of Network-Centric Approaches and Capabilities, 3(1).

18. Cayirci, E. 2013. Modeling and simulation as a cloud ser-
vice: A survey. In Winter Simulation Conference.

19. Tolk, A.; Muguira, J. A. 2003. The levels of conceptual inte-
roperability model. In the 2003 Fall Simulation Interoperabil-
ity Workshop.

20. Zeigler, B. P.; Hammonds, P. E. 2007. Modeling & simula-
tion-based data engineering: introducing pragmatics into on-
tology for net-centric information exchange. Academic Press.

21. Yilmaz, L. 2004. On the need for contextualized introspec-
tive models to improve reuse and composability of defense
simulations. Journal of Defense M&S. 1(3), 141-151.

22. Yilmaz, L. 2006. On improving dynamic composability via
ontology-driven introspective agent architectures. In Proc. of
World Multi-Conference on Systemics, Cybernetics and In-
formatics.

23. Miller, J. A.; Baramidze, G. T.; Fishwick, P. 2004. Investi-
gating ontology for simulation and modeling. In Proceedings
of the 37th Annual Simulation Symposium.

24. Silver, G.A.; Hassan, O. H.; Miller, J.A. 2007. From domain
ontology to modeling ontology to executable simulation
models. In Winter Simulation Conference.

25. Rabe, M.; Gocev, P. 2012. Applying Semantic Web technol-
ogies for efficient preparation of simulation studies in manu-
facturing. In 2012 Winter Simulation Conference.

26. Li, T.; Chai, X.; Hou, B.; Li, B. 2013. Research and applica-
tion on ontology-based layered cloud simulation service de-
scription framework. In the 2013 ACM SIGSIM conference
on Principles of advanced discrete simulation.

27. Wal, T. V. 2014. Accessed by March 10. Folksonomy coi-
nage and definition. http://vanderwal.net/folksonomy.html.

28. Heymann, P.; Garcia-Molina, H. 2006. Collaborative crea-
tion of communal hierarchical taxonomies in social tagging
systems. Technical Report. Stanford.

29. Wainer, G. 2009. Discrete-Event Modeling and Simulation:
A Practitioner's Approach.CRC/Taylor Francis.

30. Fellbaum, C. 1998. WordNet. Blackwell Publishing Ltd.

